

Bachelor of Science (B.Sc.) Semester—V (C.B.S.) Examination

MATHEMATICS

(M₉-Analysis)

Paper-1

Time : Three Hours]

[Maximum Marks : 60]

N.B. :— (1) Solve all **FIVE** questions.
 (2) All questions carry equal marks.
 (3) Questions **1** to **4** have an alternative. Solve each question in full or its alternative in full.

UNIT-I

1. (A) Obtain the Fourier series expansion of

$$f(x) = x^2 \text{ in } -\pi \leq x \leq \pi;$$

and deduce that at $x = 0$

$$\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

(B) Express $f(x) = \cos x$ as a Fourier sine series in the half range $0 < x < \pi$. 6

OR

(C) Find the Fourier series for the function $f(x)$ defined by

$$f(x) = \begin{cases} 2, & -2 \leq x < 0 \\ x, & 0 < x < 2 \end{cases}$$

(D) Show that

$$\frac{1}{2}L - x = \frac{L}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{2n\pi x}{L}\right), \quad 0 < x < L. \quad 6$$

UNIT-II

2. (A) If P^* is a refinement of a partition P of $[a, b]$, then prove that

$$L(P, f, \alpha) \leq L(P^*, f, \alpha),$$

where α is monotonically increasing function on $[a, b]$. 6

(B) If $f_i \in R(\alpha)$ and $f_j \in R(\alpha)$ on $[a, b]$, then prove that $f_i + f_j \in R(\alpha)$. 6

OR

(C) If $f \in R(\alpha)$ on $[a, b]$, then prove that

$$|f| \in R(\alpha) \text{ and } \left| \int_a^b f d\alpha \right| \leq \int_a^b |f| d\alpha. \quad 6$$

(D) Suppose F and G are differentiable functions on $[a, b]$, $F = f \in R(\alpha)$ and $G = g \in R(\alpha)$ on $[a, b]$. Then prove

$$\int_a^b F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_a^b f(x)G(x)dx. \quad 6$$

UNIT-III

3. (A) If $f(z) = u + iv$ is analytic in a domain D , then prove that u, v satisfy the equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \quad \text{provided the four partial derivatives } u_x, u_y, v_x, v_y \text{ exist.} \quad 6$$

(B) Find the analytic function $f(z)$ of which the real part is $u = e^x(x \cos y - y \sin y)$. 6

OR

(C) If $u = x^2 - y^2$, $v = -\frac{y}{x^2 + y^2}$, then show that both u and v satisfy Laplace's equation, but $u + iv$ is not an analytic function of z . 6

(D) If u and v are harmonic in a region R , then prove that

$$\left(\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) + i \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) \text{ is analytic in } R. \quad 6$$

UNIT-IV

4. (A) Determine the region R of w -plane into which the rectangular region R bounded by $x = 0$, $y = 0$, $x = 2$, $y = 3$ in z -plane is mapped under the map $w = z e^{i\pi/4} \sqrt{2}$. 6

(B) If there is only one invariant point p , then show that the bilinear transformation may be put in the form :

$$\frac{1}{w-p} = \frac{1}{z-p} + k, \quad \text{where } k = \frac{c}{a-cp}. \quad 6$$

OR

(C) Find the condition that the transformation $w = \frac{az + b}{cz + d}$ transforms the unit circle in w -plane into straight line of z -plane. 6

(D) Show that the transformation $w = \frac{2z + 3}{z - 4}$ transforms the circle $x^2 + y^2 - 4x = 0$ into the straight line $4u + 3 = 0$. 6

UNIT-V

5. (A) Obtain Fourier series for the function

$$f(x) = 1 \text{ on } (0, \pi). \quad 1\frac{1}{2}$$

(B) Find the Fourier coefficient b_n for

$$f(x) = x, \quad 0 < x < 2\pi. \quad 1\frac{1}{2}$$

(C) Given that $f \in R(\alpha)$ on $[a, b]$. Then prove for positive constant c , $cf \in R(\alpha)$ on $[a, b]$. 1 $\frac{1}{2}$

(D) State fundamental theorem of integral calculus. 1 $\frac{1}{2}$

(E) Using polar form of Cauchy-Riemann equations,

show that $w = f(z) = z$ is analytic. 1 $\frac{1}{2}$

(F) Prove that $u = (x - 1)^3 - 3xy^2 + 3y^2$ is a harmonic function. 1 $\frac{1}{2}$

(G) Find the fixed points of the bilinear transformation

$$w = \frac{(2 + i)z - 2}{z + i}. \quad 1\frac{1}{2}$$

(H) Write the normal form of a bilinear transformation $w = \frac{z - 1}{z + 1}$; given that $z = i, -i$ are its fixed points. 1 $\frac{1}{2}$